Diffusion Maps for dimensionality reduction and visualization of meteorological data
نویسندگان
چکیده
منابع مشابه
Dimensionality Reduction for Data Visualization
Dimensionality reduction is one of the basic operations in the toolbox of data-analysts and designers of machine learning and pattern recognition systems. Given a large set of measured variables but few observations, an obvious idea is to reduce the degrees of freedom in the measurements by representing them with a smaller set of more “condensed” variables. Another reason for reducing the dimen...
متن کاملDimensionality reduction for financial data visualization
Various data mining methods are used for examining large financial data sets to uncover hidden and useful information. Ability to access big data sources raises new challenges related with capabilities to handle such enormous amounts of data. This research focuses on big financial data visualization that is based on dimensionality reduction methods. We use data set that contains financial ratio...
متن کاملDimensionality reduction for visualization of normal and pathological speech data
For an adequate analysis of pathological speech signals, a sizeable number of parameters is required, such as those related to jitter, shimmer and noise content. Often this kind of high-dimensional signal representation is difficult tounderstand, even for expert voice therapists andphysicians.Data visualization of a high-dimensional dataset can provide a useful first step in its exploratory dat...
متن کاملManifold Learning and Dimensionality Reduction with Diffusion Maps
This report gives an introduction to diffusion maps, some of their underlying theory, as well as their applications in spectral clustering. First, the shortcomings of linear methods such as PCA are shown to motivate the use of graph-based methods. We then explain Locally Linear Embedding [9], Isomap [11] and Laplacian eigenmaps [1], before we give details on diffusion maps and anisotropic diffu...
متن کاملInformation Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization
Nonlinear dimensionality reduction methods are often used to visualize high-dimensional data, although the existing methods have been designed for other related tasks such as manifold learning. It has been difficult to assess the quality of visualizations since the task has not been well-defined. We give a rigorous definition for a specific visualization task, resulting in quantifiable goodness...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2015
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2014.08.090